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EXECUTIVE SUMMARY

OBJECTIVE

Examine the performance of the Rete algorithm of OPS83 for different working-
memory element (WME) and rule left-hand side configurations. Results of this study can be
used in designing OPS83 and similar language programs for maximum performance speed.

RESULTS

* Adding working-memory elements is generally faster than removing that same
working-memory element. The larger the make time, the larger the relative
difference between make and remove times. When it takes less than about 10 ms to
make a WME, it takes 3 to 4 times as long to remove that same WME. Make times
of around 25 ms correspond to remove times about 10 times as long. Make times
of 300 to 400 ms correspond to remove times about 50 times as long.

" The number of rules has a linear impact on the time it takes to modify working
memory.

• For most conditions, it takes about the same amount of time to match constant-
condition as within-condition comparisons.

* Between-condition comparisons fluctuate from faster to slower than constant-
condition and within-condition comparisons.

* The number of conditions has an exponential impact on make and remove times.

" The number of comparisons per condition has an erratic effect on the modification
times, but is usually small in size.

* The number of working-memory elements that match conditions has an exponential
impact on the modification times.

• The total number of working-memory elements affects the modification times. The
magnitude is variable, as are the relative effects on the constant-, within-, and
between-condition comparisons.

* Working-memory elements that match the first conditions of rules may take 3 to 4
times longer to modify than those which match the later parts of the LHS. ,2>
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INTRODUCTION

DEVELOPMENT OF OPS83

The Rete algorithm was developed by Charles L. Forgy at Carnegie-Mellon
University. It is widely accepted as an efficient pattern-matching algorithm. DARPA (Defense
Advanced Research Project Agency) acknowledged the need for a high-execution-speed
production system language by funding the development of OPS83. OPS83 uses the Rete
algorithm and the C programming language to achieve high execution speed after compilation.

EXPERIENCE WITH OPS83

A large expert system using OPS83 and developed at NOSC and Carnegie-Mellon
University has shown serious run-time performance limitations. Degradation appeared after
extended run times or subjection to heavy loads. Extensive processing usually resulted in
extensive working-memory sizes. The quest for means to improve performance speed has led
to the in-depth measurements of the OPS83 implementation of the Rete algorithm reported
here.

RETE MATCH ALGORITHM

Function/Overview

The function of the Rete match algorithm is to compute the conflict set, which is a set
of ordered pairs of the form: [production, list of working-memory elements matched by the
LHS]. A production is a rule in a production system, and the LHS (left-hand side) is the
antecedent (or pattern of conditions) needed for the rule to be satisfied. These ordered pairs
are called instantiations.

The main subtask of computing the conflict set is pattern matching, which involves
performing comparisons between patterns specified in rule antecedents and items in working
(data) memory. An antecedent describes a condition on a set of objects. These objects are
items in the working memory and represent the problem-solving state of the system. The
patterns may be the antecedents of the rules. The patterns are used to retrieve a set of objects
that satisfy an antecendent. If a set of objects in working memory match an antecedent, that
rule can be called with these objects bound to variables that can be used by the right-hand
side of the rule.

The pattern matcher is called after each rule firing (execution). The right-hand sides
can change working memory, so the sets of objects that match patterns can change too.

Why the Algorithm is Efficient

Comparing all the working-memory elements with all the condition comparisons
becomes complex in that, every time a rule fires (executes), changes to the working memory
may result. Before the next rule fires, the conflict set must be remade, which means that the
match algorithm must be re-executed. Iteratively comparing all condition comparisons to the
entire working memory after each rule firing is very expensive. The Rete match algorithm has
incorporated methods to keep track of the matches from the previous rule firing. It therefore
only needs to examine the newest change to working memory and decide: a) if any of the
previous matches are affected by the change, and b) if any new matches result from the
change.
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The Rete algorithm exploits the fact that only a small fraction of working memory
changes each cycle by storing the match from previous cycles in a network of queues called
the Rete network and using them in subsequent cycles. It also exploits the similarity between
condition elements of productions by performing common tests only once. These two features,
in combination, make Rete an efficient match algorithm.

Data Flow Net

The Rete algorithm compiles the LHS of the rules into a data flow network to
facilitate the pattern matching. To generate the network for a production, it begins with the
individual condition elements in the left-hand side. For each condition element, it chains
together test nodes that check:

- Whether the attributes in the condition element that have a constant as their value
are satisfied.

- Whether the attributes in the condition element that are related to a constant by
a predicate are satisfied.

- Whether two occurrences of the same variable within the condition element are
consistently bound. Each node in the chain performs one such test. (The three kinds of tests
above will be called "within-condition comparisons," because they correspond to individual
condition elements and a single working-memory element.) Once the algorithm has finished
with individual condition elements, it adds nodes that check for consistency of variable
bindings across the multiple condition elements on the left-hand side. (These tests will be
called "between-condition comparisons," because they refer to multiple condition elements
and multiple working-memory elements.) Finally, the algorithm adds a special terminal node
to represent the production corresponding to this part of the network.

The following discussion of the four kinds of nodes, and the tokens passed between
them, is taken largely from Gupta, 1986. The objects that are passed between nodes are called
"tokens," which consist of a tag and an ordered list of working-memory elements. The tag can
be either a (+), indicating an addition to working memory, or a (-), indicating that something
has been removed from working memory. The list of working-memory elements associated
with a token corresponds to a sequence of those elements that the system is trying to match or
has already matched against a subsequence of condition elements on the left-hand side.

The data-flow network produced by the Rete algorithm consists of four different
types of nodes. These are as follows:

I) Constant-test nodes. These are used to test whether the attributes in the condition
element that have a constant value are satisfied. These nodes always appear in the top part of
the network. They have only one input and, as a result, they are sometimes called one-input
nodes.

2) Memory nodes. These store the results of the match phase from previous cycles
as states within them. The state stored in a memory node consists of a list of the tokens that
match a part of the left-hand side of the associated production. At a more detailed level, there
are two types of memory nodes; (I) the alpha-mem nodes, and (2) the beta-mem nodes. The
aipha-mem nodes store tokens that match individual comparisons. Thus all memory nodes
immediately below constant-test nodes are alpha-mem nodes. The beta-mem nodes store
tokens that match a sequence of condition elements in the left-hand side of a production.
Thus all memory nodes immediately below two-input nodes are beta-mem nodes.
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3) Two-input nodes. These test for joint satisfaction of condition element in the
left-hand side of a production. Both inputs of a two-input node come from memory nodes.
When a token arrives at the left input of a two-input node, it is compared to each token
stored in the memory node connected to the right input. All token pairs that have consistent
variable bindings are sent to the successors of the two-input node. Similar action is taken
when a token arrives at the right input of a two-input node. There are also two types of
two-input nodes: (1) and-nodes and (2) not-nodes. While the the and-nodes are responsible
for the positive condition elements and behave in the way described above, the not-nodes are
responsible for the negated condition elements and behave in an opposite manner. The
not-nodes generate a successor token only if there are no matching tokens in the memory
node corresponding to the negated condition element.

4) Terminal nodes. There is one such node associated with each production in the
program. Whenever a token flows into a terminal node, the corresponding production is
either inserted into or deleted from the conflict set.

State Saving

The saving of the match state between rule firings is time-saving for most applications.
The Rete algorithm lies along a gradation of schemes that save different amounts of state
between rule firings. The following is a discussion of what some of these states are, and where
the Rete algorithm fits among them.

One possible scheme that a state-saving algorithm may use is to store information
only about matches between individual condition elements and working-memory elements. In
the terminology of the Rete algorithm, this means that only the state associated with the
alpha-mem nodes is saved. For example, consider a production with three condition elements
CE I, CE2, and CE3. Then the algorithm stores information about all working-memory
elements that match CE I, all working-memory elements that match CE2, and all working-
memory elements that match CE3. It does not, however, store working-memory tuples that
satisify CE I and CE2 together, and so on. The information is recomputed on each cycle. This
scheme is at the low end of the state-saving algorithms. The problem with this scheme is that
much of the state has to be recomputed on each cycle. This often increases the total time
taken by the cycle.

A second possible scheme that a state-saving algorithm may use is to store information
about matches between all possible combinations of condition elements that occur in the left-
hand side of a production and the sequences of working-memory elements that satisfy them.
For example, consider a production with three condition elements CE 1, CE2, and CE3. In
this scheme, the algorithm stores information about all working-memory elements that match
CE 1, CE2, and CE3 individually, as well as information about all working-memory tuples
that match CEI and CE2 together, CE2 and CE3 together, and so on. This scheme stands at
the high end of the state-saving algorithms. It stores almost all information known about the
matches between the productions and the working-memory. Two possible problems with the
scheme are: I) the state may become very large, and 2) the algorithm may spend a lot of time
computing and deleting state that never gets used. That is, the state may never result in a
production entering or leaving the conflict set.

The amount of state computed by the Rete algorithm falls in between that computed
by the previous two schemes. The Rete algorithm stores information about working-memory
elements that match individual condition elements, as proposed in the first scheme. In
addition, it also stores information about tuples of working-memory elements that match
some fixed combinations of condition elements. The choice about the combinations of
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condition elements for which match information is stored is fixed at the compiler's compile
time. (Note that by varying the combinations of condition elements for which match
information is stored, a large family of different Rete algorithms can be generated.) For
example, for a production with three condit'on elements CE I, CE2, and CE3, the standard
Rete algorithm stores information about working-memory elements that match CE I, CE2,
and CE3 individually. This information is stored in the alpha-mem nodes. In addition, it
stores information about working-memory element tuples that match CE I and CE2 together.
This information is stored in a beta-mem node. The Rete algorithm uses this information and
combines it with the information about working-memory elements that match CE3 to generate
tuples that match the complete left-hand side (CE 1, CE2, and CE3 all together). The Rete
algorithm does not store information about working-memory tuples that match CE I and CE3
together, or those tuples that match CE2 and CE3 together, or those tuples that match CE2
and CE3 together, as is done by the algorithm in the second scheme.

The Rete algorithm exploits the similarity between condition elements of productions
by sharing constant-test nodes, memory nodes, and two-input nodes. The sharing of nodes in
the Rete network results in considerable savings in execution time, since the nodes have to be
evaluated only once instead of multiple times. This sharing of nodes also results in savings in
space. This is because sharing reduces the size of the Rete network and because sharing can
collapse replicated tokens in multiple unshared memory nodes into a single token in a shared
memory node.

The Rete algorithm is used in OPS83 and other places to manage the matching of the
working-memory elements to the LHS conditions of the rules. This step has been shown to be
one of the slowest phases in execution of OPS83 code. It is thus a ripe candidate for
quantitative investigation to delineate where the slowest steps are. This will give pointers to
software engineers and programmers concerned with high-speed performance.

APPROACH OF THE CURRENT REPORT

This report documents iterations of the various parameters that affect the steps taken
by the match algorithm. Since the match algorithm compares working-memory elements with
rule patterns, different sizes and configurations of these two parameters are examined.

a
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METHODS

HARDWARE

Measurements were made on a SUN 3/160 workstation with 8 Mbytes of main
memory (Motorola 68020 cpu). A 385K disk was used, with 150K set aside for swap space.

SOFTWARE

Version 2. 1(B) of the OPS83 compiler was used for all measurements.

The UNIX "prof" program was used to measure the total run times. This program
can be used to measure the percentage of time spent doing each routine. The sum of all these
routines gives the amount of time used to run the whole program.

OPS83 provides a function call named "wmctime" that returns the amount of time
used to conduct the last working-memory change. This call is used to measure both additions
to and deletions from working memory.

The experiments presented in this paper outline how long it took to trace various
working-memory changes through the net of LHS conditions compiled into the program.
Each time working memory changes, the pattern matching between this change and the LHSs
is performed. The wmctime function call returns the amount of time it took to make the
working-memory modifications and to perform the pattern matching. Comparison of varying
working-memory and rule configurations shows the features of rule set structures that are
slow and those that are fast under different, varying working-memory configurations.

The software setup was a combination of a UNIX shell program (appendix A) that
passed parameters to several OPS83 programs (appendixes B, C, and D) that used thes-
parameters to write other OPS83 programs (appendix E). The shell program then compiled
and ran these OPS83 programs, capturing the results of the wmctime calls. The parameters
passed by the UNIX shell program were the number of rules, the number of condition
elements per rule, the number of comparisons within each condition element, and the size of
working memory to use. The UNIX program iterated over a set of combinations of the
parameters. These sets of parameters were passed to the three OPS83 programs in appendixes
B, C, and D, which differed in whether the comparisons were constant, within, or between
conditions. These programs then wrote the final test programs, from which the results
presented here were obtained.

Care had to be exercised in the use of the wmctime function. As mentioned above, it
gave the amount of time used in making a wm modification. As other computer processes
competing for the cpu would interrupt the wm modification being measured, the output of
the wmctime would need to have compensated for the time that it was not active on the cpu.
Tests were conducted to determine whether, in fact, computing jobs were considered. It
turned out that major competing jobs (compiling and running other programs, editing. etc.)
were compensated for, but monitoring the motion of the mouse was not. To prevent biases in
results, all the tests were run as the only job on the system.

Wmctime returned the time used in increments of 20 milliseconds of cpu time. This is a
high relative error when the actual time is only several milliseconds. To compensate for this.
each test was run 30 times; the average time for the 30 runs is reported in the results. To show
the variability returned by the wmctime function, the raw data for tables I and 2 are
presented in appendix F.
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RESULTS

Experiment #1: The results of this experiment are fundamental to the design of all the
subsequent experiments.

Five-part hypothesis: First, there is a difference between the amount of time it takes
to make and the amount of time it takes to remove a WME. Second, the time it takes to make
or remove a WME depends on whether it is the first WME or the second, third, et cetera.
Third, the number of rules in the program affect the make/ remove time. Fourth, the number
of conditions per rule affect the make/remove time. Fifth, unbiased variance in the
measurement technique may dictate that the average of many runs could be a better estimate
of actual speed.

Results (see figures 1-4, supported by tables 1-4):

" It takes many times longer to remove than to make a WME for large rule sets. The
larger the rule set, the longer the relative difference between make and remove
times.

" It takes longer to add and remove a second WME than the first.

" The more rules in the program, the greater the modification time.

" The more matching conditions per rule, the greater the modification time.

" The measurement technique returns time in 20-millisecond increments, and there is
a small variance in the results.

Significance: Since all these parameters impact speed, they need to be quantified in all
subsequent experiments. Comparison of any test results must check for consistency in these
parameters or factor their impact into the results achieved.

Significance: Since these parameters impact speed, they are likely candidate
parameters to measure in greater detail for bottlenecks to avoid in programming.

Significance: For experiments where the make/ remove time is small, the error is
relatively large. The raw data presented in appendix F show the variance obtained. All results
presented in this report (except appendix F) are the average of 30 replicates.

6
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Table 1. Average time (30 trials) in milliseconds to make
the first working-memory element.

Number of Conditions per Rule
Number of Rules 4 12 20 32

20 12.67 19.33 20.00 27.33

60 12.00 26.00 32.67 41.33

100 17.33 36.00 46.67 64.67

140 26.67 43.33 54.00 80.00

180 30.00 54.00 69.33 95.33
220 35.33 61.33 77.33 110.67

260 35.33 71.33 89.33 130.67

300 43.33 78.00 95.33 142.00
340 43.33 88.00 104.00 155.33
380 59.33 94.00 117.33 170.00
420 54.67 100.00 132.00 197.33

460 59.33 111.33 136.00 207.33
500 67.33 110.67 158.00 218.67

Table 2. Average time (30 trials) in milliseconds to remove
the first working-memory element.

Number of Conditions per Rule

Number of Rules 4 12 20 32

20 4.67 4.00 6.67 14.00

60 18.00 21.33 25.33 29.33

100 42.00 48.67 55.33 62.00
140 76.67 85.33 88.00 103.33
180 128.00 135.33 145.33 154.00

220 184.67 198.00 206.00 224.00

260 260.00 270.00 280.00 298.67

300 336.67 352.00 368.00 386.00

340 435.33 445.33 460.00 486.00

380 538.00 552.67 570.67 594.67
420 650.00 674.00 690.00 716.67

460 784.00 798.00 822.00 847.33

500 921.33 941.33 940.67 998.00
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Table 3. Average time (30 trials) in milliseconds to make
the second working-memory element.

Number of Conditions per Rule

Number of Rules 1 2 4 6

2 1.33 0.00 5.33 22.67

4 0.00 2.00 7.33 42.00
6 1.33 2.00 7.33 42.00

8 1.33 2.67 12.67 59.33
10 1.33 2.67 18.00 103.33
12 0.67 4.00 23.33 118.00

14 0.67 7.00 23.33 134.67

16 0.00 3.33 26.00 153.33

18 2.00 8.67 30.00 182.00

20 1.33 9.33 33.33 186.00
22 2.00 9.33 40.00 216.67

24 0.67 10.00 48.67 222.67

26 0.33 8.67 43.33 250.67

Table 4. Average time (30 trials) in milliseconds to remove
the second working-memory element.

Number of Conditions per Rule

Number of Rules 1 2 4 6

2 0.00 0.67 4.67 26.67
4 1.33 0.67 11.33 115.33

6 2.00 1.33 21.33 230.00

8 0.67 4.00 34.00 392.00

10 0.67 1.33 50.67 592.67

12 1.33 5.33 72.00 836.67
14 2.00 9.33 91.33 1120.67

16 0.33 8.67 116.00 1454.67
18 0.67 10.00 143.33 1823.33
20 1.33 13.33 168.67 2217.33

22 0.67 16.67 208.00 2686.00
24 2.67 20.00 244.00 3188.67
26 4.00 22.67 284.00 3712.00
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MAKE, REMOVE, AND TOTAL RUN TIMES

Under nearly trivial conditions of very small working-memory sizes and a small
number of very simple rules, remove time is smaller than make time. Under all other
conditions, however, remove time is larger than make time-often dramatically so. Under
continuous running conditions, an OPS83 program will need to remove as much data from
working memory as it adds. Since the amount of time it takes to perform removes is larger
than that required by makes, the remove time will have a greater impact on the overall speed.
The discussions in this paper present both make times and remove times, but they will be
biased toward remove times since total run times exhibit this same bias.

Generally, when make times are small, remove times are also fairly small (figures 5a-b).
As make times increase slightly, remove times increase markedly (figures 6a-b). As make
times increase even more, remove times explode, reaching the computer's limits (figures 7a-b).

Total run times were also measured to determine how much of the actual run time
was spent in the pattern matching. The experimental setups used for the results in this report
were geared to specifically focus on the Rete algorithm match time. No time was spent firing
rules, doing conflict resolution, et cetera. As a result, more than 99% of the total run time was
spent doing pattern matching. A few selected results are presented to confirm this.

For figures 8a-b, the total run time for constant comparisons was 53.38 seconds. The
amount of time spent making and removing the 30 replicate working-memory elements was
53.26 seconds. Thus 0.12 second was spent doing OPS83 overhead and performing the first
two makes to get up to experimental conditions.

CONSTANT-, WITHIN-, AND BETWEEN-CONDITION COMPARISONS

Figures 5a through 17b show the amount of time needed to do constant-, within-, and
between-condition comparisons under a suite of rule and working-memory configurations.
Constant- and within-condition comparisons resulted in nearly identical times to modify
working memory. A marked exception to this is evident in figures I la-b. Both make and
remove times were much larger for within-condition comparisons than constant-condition
comparisons. (For a complete guide to figure and table comparisons, see table 5.)

By comparing figures I Ia with 16a and figures I Ib with 16b. it is evident that. by
reducing the numer of comparisons per condition, the disparity in time to perform constant-
and within-condition comparisons is removed.

By comparing figures I Ia with 14a and figures I lb with 14b, it is evident that, by
reducing the total number of working-memory elements, the disparity in time to perform
constant- and within-condition comparisons is removed.

The pattern of how much time it takes to perform between-condition comparisons is
variable relative to constant- and within-condition comparisons. Remove times may be slower
(figures 6b, 8b to I Ib) or about the same (figures 5b, 7b. 12b to 17b) as the other two types.
Make time may be faster (figure I la) or slower (figure 7a), or about the same (figures 8a, 9a.
10a, 12a, 13a, 5a. 14a, 6a, 15a, 16a, 17a) as the other two types.
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milliseconds milliseconds

75 - 75 -

50 - 50 -

25 25- 22 22 22

6 6 8

C W B C W B

Make times. Remove times.

Notes: No. of rules = 2
No. of wmes = 4 No. of conditions = 3
No. of wmes matching all conditions = 4 No. of comparisons/condition = 4

C, W, and B stand for constant-, within-, and between-condition comparisons.
Ii

Figure 5a-b. Make/remove times for few conditions and few rules.

114
10 108

milli-
seconds milliseconds

75 - 1800-

1666 1686

50 - 1600-

25 140- I1414
C W B C W B

Make times. Remove times.

Notes: No. of rules = 8
No. of wines = 8 No. of conditions = 5
No. of wines matching all conditions = 2 No. of comparisons/condition = 2

C, W, and B stan ior constant-, within-, and between-condition comparisons.

Figure 6a-b. Make/remove times for few matching working-memory elements and
comparisons per condition.
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milliseconds 499 milliseconds

500 4- 23K -

22161 22402
450 - 430 434 22K -

400 - 21K - 1

II _ _ I
C W B C W B

Make times. Remove times.

Notes: No. of rules = 8
No. of wmes = 3 No. of conditions = 5
No. of wmes matching all conditions = 2 No. of comparisons/condition = 2

C, W, and B stand for constant-, within-, and between-condition comparisons.

Figure 7a-b. Make/remove times with a larger working memory.

milli-
scnds 98 98 9810)-

milliseconds
- 2000 -

1674 1674

50- 1500 --

C W B C W B

Make times. Remove times.

Notes: No. of rules = 4
, No. of wmes = 3 No. of conditions = 5

No. of wmes matching all conditions = 3 No. comparisons/condition = 2

C, W, and B stand for constant-, within-, and between-condition comparisons.

Figure 8a-b. Make/remove times for few rules andworking-memory elements.
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milliseconds
6500- 6300 6300

milliseconds

200 - 186 186 184 6000-

175 -5500-55

150 - II 5000-

C W B C W B

Make times. Remove times.

Notes: No. of rules = 8
No. of wmes = 3 No. of conditions = 5
No. of wmes matching all conditions = 3 No. of comparisons/condition = 2

C, W, and B stand for constant-, within-, and between-condition comparisons.

Figure 9a-b. Make/remove times for many simple conditions.

milli-
milliseconds seconds
400 - 25000 - 245 24176

358 366

350 *- 22500 - 22365

300 - I I 1

C W B C W B

Make times. Remove times.

Notes: No. of rules = 2
No. of wmes = 8 No. of condtions = 5
No. of wmes matching all conditions = 4 No. of comparisons/condition = 2

C, W, and B stand for constant-, within-, and between-condition comparisons.

Figure lOa-b Make/remove times for few rules with many conditions.
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milliseconds 110

100- milli- 6023
seconds 839

75- 750

50 - 43 27 500 
25

25 - -1250 -I

C W B C W B

Make times. Remove times.
Notes: No. of rules = 8
No. of wies = 8 No. of condition = 3
No. of wines matching all conditions =4 No. of comparisons/condition = 4

C, W, and B stand for constant-, within-, and between-condition comparisons.

Figure I I a-b. Make/remove times with disparity in constant- and within-condition comparisons.

milliseconds milliseconds
75 -300 279 278

50 -250

25 24 28I I
25- 200

C W B C W B

Make times. Remove times.

Figure 1 2a-b. Make/remove times for few simple conditions.
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milliseconds milliseconds
75 - 75 -

50- 50 -

25 - 25 - 24 22 20

7 6 8

C W B C W B

Make times. Remove times.

Notes: No. of rules = 2
No. of wmes = 4 No. of conditions = 3
No. of wmes matching all conditions = 4 No. of comparisons/condition = 2

C, W, and B stand for constant-, within-, and between-condition comparisons.

Figure 13a-b. Make/remove times for a small simple rule set and working-memory.

milliseconds milliseconds
75 300

270 270 264

50- 250 -

25 26 25 24 200

C W B C W B

Make times. Remove times.

Notes: No. of rules = 8
No. of wmes = 4 No. of conditions = 3
No. of wines matching all conditions = 4 No. of comparisons/condition = 4

C, W, and B stand for constant-, within-, and between-condition comparisons.

Figure 14a-b. Make/remove times for few conditions.
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milliseconds milliseconds
75 - 150 - 141 142

12450 -- 125 -
35 36 39 II m

2 5 100 _

C W B C W B

Make times. Remove times.

Notes: No. of rules = 2
No. of wmes = 8 No. of conditions = 5
No. of wmes matching all conditions = 2 No. comparisons/condition = 2

C, W, and B stand for constant-, within-, and between-condition comparisons.

Figure 15a-b. Make/remove times for few rules and matching working-memory elements.

milliseconds milliseconds
75 - 900 -

866 867

50 42 45 48 850 -

2 5 
8 0 0 --

-1-N
C W B C W B

Make times. Remove times.

Notes: No. of rules = 8
No. of wines - 8 No. of conditions = 3
No. of wmes matching all conditions 4 No. of comparisons/condition = 2

C, W, and B stand for constant-, within-, and between-condition comparisons.

Figure 16a-b. Make/remove times for few conditions and comparisons per condition.
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milliseconds milliseconds
75 - 75 - 68 68 63

50- 50-

1 12 14

C W B C W B
Make times. Remove times.

Notes: No. of rules = 2
No. of wines = 8 No. of conditions = 3
No. of wines matching all conditions = 4 No. of comparisons/condition = 2

C, W, and B stand for constant-, within-, and between-condition comparisons.

Figure 17a-b. Make/remove times for few rules with simple left-hand sides.

Table 5. Guide to figure and table comparisons.

Type of Comparison Make Time Remove Time

No. of rules Tables I, 3 Tables 2, 4

Figures 1, 3 Figures 2, 4

Figures 8a, 9a Figures 8b, 9b
Figures 12a, 13a Figures 12b, 13b

Figures 5a, 14a Figures 5b, 14b

No. of conditions per rule Figures 1, 3 Figures 2, 4
Figures 10a, 17a Figures 10b, 17b

No. of comparisons per condition Figures I la, 16a Figures I Ib, 16b
Figures 12a, 14a Figures 12b, 14b

Figures I3a, 5a Figures 13b, 5b
No. of WMEs matching all conditions Figures IOa, I5a Figures 10b, 15b

Figures 7a, 9a Figures 7b, 9b
No. of total working-memory elements Figures I Ia. I4a Figures I Ib, 14b

Figures 7a. 6a Figures 7b, 6b

Figures 12a, 16a Figures 12b, l6b
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EFFECT OF THE NUMBER OF RULES

The more rules in the program, the greater the amount of time needed to trace a
working-memory modification through the net. This applies for both make and remove times.
Make times increase linearly with the number of rules, while remove times exhibit an
exponential response to rule set size.

Make time doubles if the rule set size is doubled. For unrealistically simple rule LHSs,
the effect of the number of rules is shown in figures I through 4 (these raw data are also
presented in tables 1-4, and in appendix F). The same relationship is shown under other
rule/ data memory configurations. Figure 1 2a has four times the number of rules as figure
13a, and has make times about four times larger. Figure 9a has twice as many rules as figure
8a, and has make times about twice as large. Figures 5a and 14a show further support for this
pattern.

Remove time increases nearly fourfold with a twofold increase in the number of rules.
This can be seen by comparing figures 8b and 9b, 12b and 13b, and tables 2 and 4 (the same
data are presented in figures 2 and 4).

EFFECT OF THE NUMBER OF CONDITIONS PER RULE

Both make and remove time increased dramatically as the number of conditions per
rule increased. The explosion and the make time associated with increasing the number of
conditions are shown in figures 1 and 3. This increase is attributable to the combinatorial
explosion resulting from the cross products of conditions with working-memory elements.

Remove time also shows an exponential explosion in going from three to five
conditions per rule (see figures 2 and 4).

EFFECT OF THE NUMBER OF COMPARISONS PER CONDITION

The number of comparisons per condition had an erratic impact on the make times.
Comparison of figures 13a to 5a, and 12a to 14a, showed negligible effects from changing the
number of comparisons per condition. Comparison of figure I Ia to 16a shows no change in
constant comparisons, but a difference in make times for within- and between-condition
comparisons. The contributing difference between this pair of figures and the other two pairs
is that, for this pair, not every WME matched every condition. In figures I la and 16a, the
condition tests prevented total matches between the conditions and some of the WMEs.

Remove times exhibited the same pattern as make times. Comparing figures I I b and
16b shows that, for the case in which not every WME matches every condition, increasing the
number of comparisons per condition has no impact on constant comparisons, greatly
increases the within-condition comparison times, and lowers the between-condition times.
Comparing figure 14b to 12b, and 5b to 13b, shows no effect from changes in the number of
comparisons.

EFFECT OF THE NUMBER OF WORKING-MEMORY
ELEMENTS MATCHING ALL CONDITIONS

The number of working-memory elements that match the antecedent conditions has
an exponential impact on the make and remove times (compare figures 7 to 9, and 10 to 15).
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EFFECT OF THE NUMBER OF TOTAL
WORKING-MEMORY ELEMENTS

Increasing the total number of working-memory elements increases the make and
remove times. The magnitude is variable, as are the relative effects on the constant-, within-,
and between-condition comparisons. Increasing the number of WMEs from three to eight
gave about a fourfold increase for all three types of comparisons (compare figures 7a and 6a).
Doubling the number of WMEs gave less than a doubling in make time for the conditions in
figures 12a and 16a. For the conditions in figures I la and 14a, a doubling of WMEs gave
varied results. Constant comparisons had slightly less than a doubling in make time for a
doubling in total WMEs. Between-condition comparions gave no significant effect. Within-
condition comparisons took more than four times as long.

Remove times about trebled, with a doubling in the number of WMEs for the
conditions shown in figures 12b and 16b. Comparing figures I Ib and 14b results in a different
response pattern. Doubling the number of WMEs gave more than a threefold increase in
constant comparisons, a 22-fold increase in within-condition comparisons, and no significant
change in between-condition comparisons.

EFFECT OF THE CONDITION'S POSITION IN THE LHS

Table 6 shows the match times for the individual condition elements on the LHS of a
rule. Viturally identical results were achieved among the constant-, within-, and between-
condition comparison types. As working-memory elements were added, they would match
most quickly with the conditions at the beginning of the LHS, and take progressively longer
for the conditions later in the LHS.

For the experimental conditions used. WMEs that match the first condition took
much longer to remove than WMEs that match the last conditions. Adding the make and
remove times for any condition position shown in table 6 indicates that it is slower to modify
working-memory elements that match the first few conditions than those that match the last
ones.

4,

i.

22

Al ,,I I'l I 'l,1 1 M N R



Table 6. Amount of time needed to match the different LHS condition elements.

[The rule set had 16 rules. Each rule had five LHS conditions. Each condition except the first had
two comparisons. Three WMEs were made with all fields in the value arraN equal to 0. Each %orking-
memory element matched exactly one LHS condition element. The make and remove times are for the third
WME. Two WMEs of each type were made first, and then the third WME of each type Aas made in
numerically increasing order (i.e., WMEI. WME2...) and then were remosed in decreasing order (i.e
WME80, WME79...).]

The rules were of the form:
rule
&I (WMEI)
&2 (WME2 value[l] = 0 value[2] = 0)
&3. &4, and &5 similar to &2

rule next
&I (WME6)
&2 (WME7 value[I] = 0 value[2] = 0)
&3. &4. and &5 similar to &2

LHS position of matching:
Condition Element Make Time Remove Time

First 3.1 40.3

Second 4.9 22.2

Third 6.9 11.7
Fourth 9.1 7.2
Fifth 8.4 4.4

A similiar experiment was conducted by using within-condition comparisons. The rules were of
the form:

rule
&l (WME6)
&2 (WME7 value[l] = @.value[I] value[2] = @.value[2])
&3. &4. and &5 similar to &2

LHS position of matching:
Condition Element Make Time Remove Time

First 3.1 40.1

Second 4.8 21.5
Third 7.0 12.2
Fourth 8.8 6.3
Fifth 8.5 4.4

A similiar experiment was conducted by using within-condition comparisons. The rules were of

the form:
rule
&l (WME6)
&2 (WME7 value[I] = &l.value[I] value[2] = &l.value[2])
&3 (WME8 value[I] = &2.value[l] value[2] = &2.value[2])
&4 and &5 similar to &3 .

LHS position of matching:
Condition Element Make Time Remove Time

First 3.0 40.1

Second 5.8 22.6
Third 7.4 12.2

Fourth 8.8 7.1
Fifth 9.8 3.8
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SUMMARY OF RESULTS

" Adding working-memory elements is generally faster than removing that same
working-memory element. The larger the make time, the larger the relative
difference between make and remove times. When it takes less than about 10 ms to
make a WME, it takes 3 to 4 times as long to remove that same WME. Make times
of around 25 ms correspond to remove times about 10 times as long. Make times
of 300 to 400 ms correspond to remove times about 50 times as long.

" The number of rules has a linear impact on the time it takes to modify working
memory.

* For most conditions, it takes about the same amount of time to match constant-
condition as within-condition comparisons.

" Between-condition comparisons fluctuate from faster to slower than constant-
condition and within-condition comparisons.

* The number of conditions has an exponential impact on make and remove times.
" The number of comparisons per condition had an erratic effect on the modification

times, but was usually small in size.

" The number of working memory elements that match conditions has an exponential
impact on the modification times.

* The total number of working-memory elements affects the modification times. The
magnitude is variable, as are the relative effects on the constant-, within-, and
between-condition comparisons.

" Working-memory elements that match the first conditions of rules may take 3 to 4
times longer to modify than those which match the later parts of the LHS.

CONCLUSIONS

The number of rules has an algebraic impact on the modification times, while the
number of conditions has an exponential impact. Thus, it is better to have more rules with
fewer conditions than vice versa.

The number of comparisons in a condition has little effect on match time. Thus the
use of complex conditions, which are very selective about which WMEs to fire, is an efficient
programming technique.

No sharp breaks in the modification times were seen as the parameters (no. of rules,
no. of conditions per rule, no. of comparisons per condition, no. of working-memory
elements matching all conditions, no. of total working-memory elements) used in this study
were varied. Parameters that exerted an impact did not have threshold values below which
changes had little impact but above which there was marked change. Change was continuous,
which facilitated a predictable degradation or improvement in performance as these
parameters changed.

Optimal program formats are highly dependent on the task. For a task where speed is
critical, working-memory size must be kept as small as possible. Combining many small
working-memory elements into fewer larger ones is more efficient. If the task is very short,
working-memory management can be performed two ways. Because removes generally are
slower than makes, an efficient alternative to removes for a short run may be to add working-
memory elements that "poison" existing elements to keep rules from firing on them.
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DISCUSSION

During the initial stages of building an expert system, efficiency lies in the reduction
of programming time. Thus knowledge representation, working-memory element design, and
other factors should be geared towards easing the burden of the programmer. Guidelines for
optimal performance should be used so that blatant violations of good programming practice
do not occur. After the building of the prototype for proof of concept, the program can be
examined both holistically and fragment by fragment to determine potential sites for
optimization.

There are rules of thumb to follow for efficient programming. A good summary of
these rules is found in Brownston, et al. (1985). p 241. Conformance to such guidelines is a
good first approach to an efficient program. If performance is still below requirements after
adhesion to the guidelines, more extensive steps must be taken. At this point, tradeoffs in
different aspects of program performance are balanced by using the detailed results presented
in this report.

An additional consideration for the software engineer is whether the program will run
on a continuous basis or simply run to find a single answer and then exit. The difference from
the performance perspective is that a continuously running program must perform working-
memory housekeeping to keep from being overloaded with data. Thus, following initial
startup. there are roughly as many "additions to" as "deletions from" working memory. This
means that remove times are an important consideration. For a program that will run only
for a short time, remove time is not as important as make time.

Writing efficient OPS83 programs requires both a knowledge of how the Rete
algorithm works and a knowledge of the problem space. The data input and the output
desired have a strong bearing on the best knowledge and data representation. Lots of disjunct
information necessitates lots of working-memory elements. Alternatively, the task and data
could consist of lots of information, groups of which have a common trait. If this is the case,
the software engineer has the option 6f combining some or all of the data fragments that have
trait(s) in common in the same working-memory element. Rules that need to bring in large
amounts of information on their LHS can do so more quickly by using several large working-
memory elements than by using many small working-memory elements.

Multiple rules with identical LHS conditions do not have an exponential impact on
modification time because the constant, memory, and two input nodes of the network for the
rules are shared. Terminal nodes are unique for each rule, as is inclusion in the conflict set, so
there is an impact on modfication time, but the combinatorial explosion seen when the
number of conditions is increased does not occur with changes in the number of rules.

j
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APPENDIX A
UNIX SHELL SCRIPT THAT QUERIES THE USER FOR CONFIGURATION

PARAMETERS

This is a UNIX shell program used to set the number of rules, the number of conditions per

rule, the number of comparisons per condition, and the size of working memory to use in the

experiment. It passes these parameters to three OPS83 programs that set up test programs to

measure constant-, within-, and between-condition comparisons.

echo ..

ps -a # Check for other jobs running

for rules in 2

do

for conditions in 4

do

echo" # Need a newline

for comparisons in 2

do

for makes in 4 8

do

echo "$rules $conditions $comparisons $makes" j setup3run

make -f irmake

irrun

prof irrun > junk

tail -1 junk # Displays the total run time

done
done

done
done

ps -a

for rules in 2

do

for conditions in 4

A-I
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do

echo '

for comparisons in 2

do

for makes in 4 8

do

echo "$rules $conditions $comparisons $makes" I setup2run

make -f irmake

irrun

prof irrun > junk

tail -1 junk

done

done

done

done

ps -a

for rules in 2

do

for conditions in 4

do

echo

for comparisons in 2

do

for makes in 4 8

do

echo '$rules $conditions $comparisons $makes" Isetupi run
make -f irmake

irrun

prof irrun > junk

tail -1 junk

done

done

done

done

ps -a
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APPENDIX B
CODE THAT CONFIGURES CONSTANT-CONDITION COMPARISON PROGRAMS

Example code that reads the number of rules, the number of conditions per rule, the number of

comparisons per condition, and the total number of WMEs. This input is used to write a program
to do constant-condition comparisons.

module setup(mainl){

use o83shl;

procedure mainlO {
local Ul logical, &LHS: integer, &rules: integer, Ri integer, &j: integer,

Wile: integer, &bar: char, &comps: integer, Wk integer,

&makes: integer, &total: integer;

* &Mar.'I';

&fle = create(lir.opsl);

if (&file <. 0) writeo IlError creating ir.opsl, '\n'

else{(

writeo '\n', 10f the format @.value[nJ = 01;

write() '\nl', 1# of rules: 1;

read() &rules;

write() &rules;

write() '\nl', 1# of LHS conditions: 1;

reado &LHS;

writeo &LHS;

writeo Wn, 1# of comparisons per LHS condition: 1;

read() &comps;

* write 0 &comps;

writeo W\f, I# of makes: 1;

reado &makes;

writeo &makes, W\n;

write(&file) Imodule irl (mainl) fl, Wn,
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luse o83shl;I, An',
I-- This program written by setupi opsi, A'\n,

lexternal function wmctimeo: integer;j, A'n;
write(&file) Itype WME - element (value:array(1 7: integer) );I, An';

for &i - (1 to &rules){(

write(&file) Irule numberl, W, I {11;
write(&file) An', I &0(WME);I;

for &j - (1 to &LHS){j

write(&file) An', I &J, &j, I(WMEI;

-To build: (WME (@.value[1] = 0); (@.value[2) 0);)

for U&k (1 to &comps-1)

write(&file) Ivalue(I, S&k, 11 = 0;1;

write(&file) I valuefl, Mk, 1] = 0;1;

write(&file) 1); 1;

;-- end for &j =(I to &LHS)

); -- end for Wi = 1 to &rules

write(&file) 1procedure mainlo ()(, \n',

I local W: integer, &j: integer, &k integer,1, \n';
write(&file) I &makeWME-cum : integer,,

I &remo'ieWME-cum : integer,1, \n';
write(&file) J Ul logical;I, \n';

write(&file) I&makeWME-cum - 0; 1,

I &removeWME-cum = 0;1,'\n';
for W&i (1 to (&makes - 4))

write(&file) Imake (WME value[2] = 1);j, A',

write(&file) Imake (WME value[2] = 0);!, An';

write(&file) Imake (WME value[2] =0);!, A\n';

write(&file) Imake (WME value[21 0);!, A\n';

write(&file) Ifor Wi - (1 to 30) { -- Thirty reps. 1, An';

write(&file) I make (WME);I, An',

I B-2
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I&makeWME-cum - &makeWME-cum + wmctimeo;I, An';
write(&file) I M = wSizeo;I,) &I wremove(&k);j, An',

I if (&I = Ob)I,
I write( \n', 1, Mbar, I'**ERROR IN REMOVE*l,
Mbar, An',

I else 1, An',

I &removeWME-cum - &removeWME-cum + wmctimeo;I, An';
write(&file) 1); -- end for &i - 1 to 301, \n';
write(&file) J write() ', 1, &bar, IAvg WME make/remove time: 1,

&Mar, 1,1, \n', I &makeWME-cum3O, 1, &bar, 1 1, &bar,
1. &remove_WME_cum/30, \n';I, An';

write(&file) 1}; -- end procedure main 1, An',

1); -- end modulel, \n';
1; end else

&I close(&file);

-end procedure maini

-end module setup

8-3
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APPENDIX C
CODE THAT CONFIGURES WITHIN-CONDITION COMPARISON PROGRAMS

Example code that reads the number of rules, the number of conditions per rule, the number of
comparisons per condition, and the total number of WMVEs. This input is used to write a program
to do with in-cond ition comparisons.

module setup(mainl){

use o83shl;

procedure mainlO

local Ul logical, &LHS: integer, &rules: integer, Ui integer, &j: integer,

&Wile: integer, &bar: char, &comps: integer, Wk integer,

&mnakes: integer, &total: integer;

&bar =';

&fle =create(Iir.opsI);

if (&fie <= 0) writeo jError creating ir.opsl, A\n'

else (
writeo '\n', ;Of the format @.value[nJ = @.value~n~j;

writeo)'\n*, 1# of rules: 1;

read() &rules;

writeo &rules;

writeo A\n', 1# of LHS conditions: 1;

reado &LHS;

writeo &LHS;

write() An', 1# of comparisons per LHS condition: 1;

reado &comps;

write() &comps;

write() An', 1# of makes: 1;

read() &makes;

writeo &makes, An';

wrte(&file) Imodule irl (mainl) (1, Ani',
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luse o83shI;I, W,.

I-- This program written by setup2.opsl, Wn,

lexternal function wmctimeo: integer;j, W\n;
write(&file) Itype WME = element (value:array(1 7: integer) );I, Wn;

for &i - (1 to &rules){

write(&file) Irule numberi, &i, I { 1;

write(&file) Wn, I &O(WME);I;

for &j =(I to&LHS) f
write(&file) Wn, I &J, &j, I(WMEI;

-To build: (WME (@&.value~ll = @.value[1]); (@.value[2J @.value[lJ);)
for Mk = (i to &comps-1)

write(&file) I value[, &k, 1] = @.valuel, &M, 1];I;
write(&file) I valuefj, Uk, 11 = @.value[I, M-1, 1];I;

write(&file) 1); 1;
}-endfor &j =(I to &LHS)

wr~te(&file) I- ;.\'
1-- end for Wi = 1 to &rules

write(&file) Iprocedure maini () 1, W,

I local Ui integer, &j: integer, Wk integer,j, Wn;
write(&file) I &makeWME-cum : integer,j,

I &removeWME-cum : integerI, An';
write(&file) I Ul logical;I, '\n';

write(&file) I&makeWME-cum = 0; 1,

I &removeWME-cum = 0;1,'\n';
for Wi - (1 to (&makes - 4))

write(&file) Imake (WME value[2] = 1);j, \n';

write(&file) Imake (WME value[21 = 0);I, \n';

write(&file) Imake (WME value[2] = 0);I, Wn;

write(&tile) Imake (WME value[2J . 0);I, W\;

write(&file) Ifor &I = (1 to 30) ( -- Thirty reps.I, A'n;

write(&file) I make (WME);I, W\n,
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I&makeWME-cum - &makeWME-cum + wmctimeo;I, '\n';

write(&file) I &k - wsizeo;I, I &I . wremove(&k);l, An',

I if (&Il.Ob)I,

I write) \n', 1, Mbar, 1****ERROR IN REMOVE***,

&bar, VV',

I else l,VI,

I &removeWME-cum = &removeWME-cum + wmctimeo;I, An';

write(&file) 1); -- end for Mi - 1 to 301,A'\;

write(&file) I write() An', 1, Mbar, lAvg WME make/remove time: 1.

Mbar, 1,1, An', I&makeWME-cum3O, 1, &bar, 1 1, Mbar,

1, &removeWME-cum/30, '\n';J, An';

write(&file) 1); -- end procedure main 11, An',

1); --end modulel,W~;

;-end else

&I = close(&file);

;-.end procedure maini

1 -end module setup
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APPENDIX D
CODE THAT CONFIGURES BETWEEN-CONDITION COMPARISON PROGRAMS

Example code that reads the number of rules, the number of conditions per rule, the number of

comparisons per condition, and the total number of WMEs. This input is used to write a program

to do between-condition comparisons.

module setup(mainl)(

use o83shl;

procedure mainl( 1

local Ul logical, &LHS: integer, &rules: integer, Ui integer, &j: integer,

Mile: integer, Mbar: char, &comps: integer, &k: integer,

&makes: integer, &total: integer;

&bar = 'j';
Mile = create(Iir.opsl);

if (&file <= 0) writeo jError creating ir.opsj, '\n'

else {
write() '\n', 10f the format @.value[nJ = @-1 .value[n]I;

writeo '\n', 1# of rules: 1;

read() &rules;

writeo &rules;

writeo '\n', 1# of LHS conditions: 1;

read) &LHS;

write( &LHS;

writeo A\n', 1# of comparisons per LHS condition: 1;

read() &comps;

writeo &comps;

write() '\n', 1# of makes: 1;

read() &makes;

write() &makes, W\n;
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juse o83shI;j, Wn,

I-- This program written by setup3.opsj, "nW,

lexternal function wmctimeo: integer;j, Wn;

write(&file) Itype WME = element (value:array(1 7: integer) );I, \n';

for Wi = (1 to &rules) {
write(&file) Irule numberi, &i, I { 1;

write(&file) '\n', I &O(WME);I;

for &j =(1 to &LHS){(

write(&file) '\n', I &J, &j, I(WMEI;

-- To build: (WME (@.value[11 = @.value[1 I); (@.value[21 = @-1.value[1]););

for Mk = (1 to &comps-1)

write(&file) I valuefl, &k, 11 = &J, &j-1, I.value[I, Mk, 11;

write(&file) I valuell, Mk, 1] = &J, &j-1 , I.value[I, Mk-1 , 1];I;

write(&file) 1); 1;
}; -- end for &j =(I to &LHS)

}-- end for &i =1to &rules

write(&file) Iprocedure mainl() (1, Wn,

write(&file) I &makeWME-cum : integer,,

I &removeWME-cum : integer,i, \n';
write(&file) I Ul logical;i, \n';

* write(&file) I&make-WME-cum =0; 1,

* I &removeWME-cum =0;1, '\n';

for &i - (1 to (&mnakes - 4))
wrt(fie mke(M ale2 1;,W
write(&file) Imake (WME value[2] = 10);I, Wn;

write(&file) Imake (WME value[2J . 0);I, Wn;

write(&file) Imake (WME value[2] = 0);I, Wn;

write(&file) iaor &i - (1 to 30) ( -- Thirty reps.I, \n';

write(&file) I make (WME);I, W,'
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I&makeWME--cum = &make_-WME -cum + wmctimeo;I, Wn;
write(&file) U & = wsizeo;I, I &I= wremove(&k);I, Wn,

I if (&I Ob)I,
I write) \n', 1, Mbar, I****ERROR IN REMOVE****I,
&bar, '\n',

I else 1, Wn,
I &removeWME -cum = &removeWME-cum + wmctimeo;I, Wn;

write(&file) 1); -- end for &i =I to 301,'\n';
write(&file) I write() W\, 1, &bar, iAvg WME make/remove time: 1,

&bar, 1,1,'\n', I &makeWME-cum/30, 1, &bar, 1 1, &bar,
1, &removeWME-cum/30, \n';I, Wi;

write(&file) 1}; -- end procedure mainl1, '\n*

1); -- end modulel, \n';
;-end else

&I close(&file);

}-end procedure maini

-end module setup
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APPENDIX E

EXAMPLE CODE FOR BETWEEN-CONDITION COMPARISONS

Example code for two rules, five conditions per rule, two comparisons per condition, four
working-memnory elements, and four working-memory elements matching all conditions. This is the code
that would result when the numbers (2, 4, 2, 4) are passed to the program in appendix E.

module irl (mainl)

use o83shI;

-- This program written by setup3.ops

external function wmctimeo: integer;

type WME = element (value:array(1 7: integer))

rule numberi

&O(WME);

&1 (WM E valuellI = &O.value[1 1; value[21 &O.valuellI;);

&2(WME value[1] =&1.value[1J; value[21 = &l.valuel1];);

&3(WME valueji] = &2.valuell]; value[2] = &2.valuell];);

&4(WME value[1J] = &3.value[1J]; value[2] = &3.value[11) ->1

rule number2

&O(WME);

&1 (WME value[1 ] - &O.value[ 1; value[2J = &O.value[1I)

&2(WME value[1] = &1.value[1j; value[2] = &1.value[1];);

&3(WME value[1] = &2.value(1]; value[2] = &2.value[1J;);

&4(WME value[1JI = &3.value[1; value[2] = &3.valuejl;) ->1

procedure mainl (){

local Ui integer, &j: integer, &k: integer,

&makeWME-cum :integer, &removeWME-cum integer,

Ulogical;

&make__WME-cum = 0; &removeWME-cum = 0;

make (WME value[21 - 0);

make (WME valuef2] = 0);

make (WME value[21 - 0);
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for &i =(1to 30) -Thirty reps.

make (WME);

&makeWME-cum = &makeWME-cum + wmctimeo;

&k = wsizeo; Ml = wremove(&k);

if (&I = Ob) writeo '\n', 1****ERROR IN REMOVE***Il

else

&removeWME-cum = &removeWME-cum + wmctimeo;

}; -- end for &i =lto 30

write() Wn, jAvg WME make/remove time: 1,

&makeWME -cum/30,1 1 , &removeWME-cum/30, \n';

-; end procedure maini

;-end module
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APPENDIX F

DATA FOR TABLES 1 AND 2

Time is in milliseconds to make and remove the first WME.

Rules, Conditions, Type of Modification, Number of Trials@Time

20 4 make 11@0 19@20

remove 23@0 7@20

20 12 make 9@0 13@20 8@40

remove 24@0 6@20

20 20 make 10@0 10@20 10@40

remove 20@0 10@20

20 32 make 2@0 17@20 9@40 2@60

remove 9@0 21@20

60 4 make 12@0 18@20

remove 3@0 27@20

60 12 make 4@0 14@20 11@40 1@60

remove 28@20 2@40

60 20 make 3@0 11@20 10@40 6@60

remove 22@20 8@40

_______ _ _ ____ _ 8@20 12@40 10@60

remove 17@20 12@40 1@60

100 4 make 6@0 22@20 2@40

remove 1@20 25@40 4@60

100 12 make 1@0 11@20 11@40 7@60

remove 17@40 13@60

100 20 make 1@20 19@40 9@60 1@80

remove 7@40 23@60

100 32 make 3@20 4@40 8@60 13@80 2@100

remove 27@60 3@80

140 4 make 4@0 12@20 14@40

remove 5@60 25@80

140 12 make 1@0 4@20 14@40 11@60

remove 22@80 8@1 00
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Rules, Conditions, Type of Modification, Number of Trials@Time

140 20 make 5@20 7@40 10@60 8@80

remove 18@80 12@100

140 32 make 2@40 6@60 12@80 10@100

remove 25@100 5@120

180 4 make 2@0 12@20 15@40 1@60

remove 19@120 10@140 1@160

180 12 make 4@20 6@40 16@60 3@80 1@100

remove 9@120 19@140 2@160

180 20 make 1@0 1@20 1@40 13@60 8@80

6@100

remove 22@140 8@160

180 32 make 13@80 11@100 6@120

remove 9@140 21@160

220 4 make 1@0 14@20 6@40 9@60

remove 1@160 21@180 8@200

220 12 make 8@40 14@60 6@80 2@100

remove 6@180 21@200 3@220

220 20 make 3@40 9@60 9@80 7@100 2@120

remove 21 @200 9@220

220 32 make 6@80 9@100 9@120 5@140 1@160

remove 1 @200 22@220 7@240

260 4 make 6@0 6@20. 9@40 7@60 2@80

remove 4@240 22@260 4@280

260 12 make 5@40 10@60 8@80 7@100

remove 15@260 15@280

260 20 make 2@40 2@60 10@80 12@100 4@120

remove 4@260 22@280 4@300

260 32 make 2@80 3@100 10@120 7@140 8@160

remove 4@280 24@300 2@320

300 4 make 10@20 7@40 11@60 2@80

remove 6@320 23@340 1@360

300 12 make 1@40 10@60 11@80 7@100 1@120

remove 13@340 16@360 1@380

300 20 make 2@60 8@80 16@ 100 3@120 1@140
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Rules, Conditions, Type of Modification, Number of Trials@Time

remove 19@360 10@380 1@400

300 32 make 4@100 5@120 10@140 6@160 5@180

remove 22@380 7@400 1@420

340 4 make 1@0 5@20 12@40 12@60

remove 10@420 17@440 3@460

340 12 make 4@60 13@80 10@100 3@120

remove 1@420 20@440 9@460

340 20 maKe 1@60 11@80 6@100 6@120 5@140

10160

remove 40440 22@460 4@480

340 32 make 3@100 10120 4@140 14@160 8@180

remove 21 @480 9@500

380 4 make 1@20 6@40 16@60 7@80

remove 8@520 17@540 5@560

380 12 make 1@40 9080 17@100 3@120

remove 11 @540 19@560

380 20 make 1@60 2@80 9@100 90120 6@140

3@160

remove 14@560 16@580

380 32 make 4@ 120 3@140 7@160 9@ 180 4@200

3@220

remove 11@580 16@600 3@620

420 4 make 1@20 7@40 21@60 1@80

remove 17@640 11 @660 2@680

420 12 make 2@60 10@80 8@100 6@120 4@140

remove 11@660 17@680 2@700

420 20 make 4@80 5@100 3@120 9@140 5@160

4@180

remove 17@680 12@700 1@740

420 32 make 2@140 1@160 6@180 13@200 6@220

2@240

remove 10@700 15@720 5@740

460 4 make 2@20 10@40 8@60 7@80 3@100

remove 4@760 19@780 4@800 3@820
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Rules, Conditions, Type of Modification, Number of Trials@Time

460 12 make 1@60 14@100 11@120 4@140

remove 4@780 25@800 1 @820

460 20 make 2@100 12@120 10@140 4@160 2@200

remove 4@800 19@820 7@840

460 32 make 1@140 2@160 8@180 5@200 7@220

2@240 5@260

remove 19@840 11@860

500 4 make 5@40 13@60 8@80 4@100

remove 2@900 25@920 2@940 1@960

500 12 make 7@80 7@100 11@120 4@140 1@180

remove 1@820 1@920 23@940 2@960 2@980

1@1000

500 20 make 1@100 4@120 6@140 7@160 10@180

2@200

remove 29@940 1 @960

500 32 make 5@180 7@200 5@220 11 @240 2@260

remove 1@960 7@980 20@1000 1@1040 1@1080
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